Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

2,2'-Methylenebis(3-hydroxy-2-cyclohexen-1-one)

K. SethuSankar et al.

Electronic paper

This paper is published electronically. It meets the data-validation criteria for publication in Acta Crystallographica Section C. The submission has been checked by a Section C Co-editor though the text in the 'Comments' section is the responsibility of the authors.

Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

2,2'-Methylenebis(3-hydroxy-2-cyclo-hexen-1-one)

K. SethuSankar, S. Banumathi, R. Krishna and D. Velmurugan*

Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
Correspondence e-mail: dve@vsnl.com
Received 18 May 2000
Accepted 4 September 2000

Data validation number: IUC0000244
In the title compound, $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4}$, the cyclohexene rings adopt a sofa conformation. Adjacent molecules are connected by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular interactions. Each molecule is characterized by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ intramolecular hydrogen bonds. The anti arrangement of the enolic OH group and the carbonyl O atom in the solid state is similar to the anti arrangement of the NH and carbonyl groups in indigo.

Comment

The bond lengths and angles of the two cyclohexene rings in the title compound, (I), conform to expectations (Peter et al., 1992; Lalancette et al., 1997; Govindasamy \& Subramanian, 1997).

(I)

Rings $1(\mathrm{C} 1-\mathrm{C} 6)$ and $2\left(\mathrm{C}^{\prime}-\mathrm{C}^{\prime}\right)$ have a sofa conformation. The asymmetry parameters $\left[\Delta C_{s}(\mathrm{C} 1)=0.026(1)\right.$ and $\Delta C_{s}\left(\mathrm{C1}^{\prime}\right)=0.017$ (1); Nardelli, 1995] satisfy the condition for the sofa conformation. The values of the total puckering amplitudes $\left[Q_{\mathrm{T}}=0.476\right.$ (2) and 0.477 (3) \AA for rings 1 and 2, respectively; Cremer \& Pople, 1975] indicate that the two rings have the same conformation. Atoms O 2 and O 4 deviate from ring 2 by 0.134 (2) and 0.062 (2) \AA, respectively. Atoms O 1 and O3 deviate from ring 1 by 0.097 (2) and 0.066 (2) \AA, respectively. Atom C 7 deviates from rings 1 and 2 by $-0.460(2)$ and -0.394 (2) \AA, respectively. The deviations of atoms C 4 and $\mathrm{C} 4^{\prime}$ are -0.295 (2) and -0.364 (3) \AA with respect to rings 1 and 2 .

The two cyclohexene rings are attracted towards each other by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ intramolecular hydrogen bonds. Atoms O 2 and O 3 act as donors, whereas O 4 and O 1 act as acceptors. The
$\mathrm{O} \cdots \mathrm{O}$ distance agrees well with earlier reported values (Li et al., 1999; Steiner, 1997; Paixao et al., 1999; Komen et al., 1999; Parvez et al., 1999). The average O…O distance observed in the present structure is $2.615 \AA$. The sequences of the bond distances along the $\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{O} 3$ and $\mathrm{O} 4-\mathrm{C}^{\prime}-$ $\mathrm{C}^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{O} 2$ systems are indicative of some π conjugation, enhancing the polarization of charge that produces the two $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. These are rather strong, as indicated by the short values (1.78 and $1.84 \AA$) of the $\mathrm{H} \cdots \mathrm{O}$ distances. The $\mathrm{C} 1-\mathrm{C} 7-\mathrm{C1}^{\prime}$ angle is $117.0(2)^{\circ}$. The conformation of the two halves of the molecule is determined by the two $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

The packing is stabilized by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions. Atoms C5 and C5 ${ }^{\prime}$ act as donors to form intermolecular interactions with the symmetry-related atoms O 1 and O 2 .

Experimental

The title compound was prepared by the addition of a 40% aqueous solution of formalin (6 ml) to a solution of cyclohexane-1,3-dione $(15 \mathrm{~g}, 0.13 \mathrm{~mol})$ in water $(200 \mathrm{ml})$ and warming until the solution became cloudy. The $2,2^{\prime}$-methylenebis(cyclohexane-1,3-dione) started to separate out. The reaction mixture was allowed to stand overnight and the ketone was collected by filtration and dried. Yield $8.0 \mathrm{~g}(50.6 \%)$, m.p. 403-405 K (Setter, 1995).

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4}$
$M_{r}=236.26$
Orthorhombic, Pbca
$a=9.9313$ (18) \AA
$b=10.3818$ (14) \AA
$c=23.253$ (2) A
$V=2397.5(6) \AA^{3}$
$Z=8$
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 15 reflections
$\theta=2-28^{\circ}$
$\mu=0.799 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Rectangular, yellow
$0.20 \times 0.15 \times 0.10 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4 diffract- $\quad h=0 \rightarrow 12$ ometer
$k=0 \rightarrow 12$
ω scans
2264 measured reflections
2264 independent reflections
1829 reflections with $I>2 \sigma(I)$
$\theta_{\text {max }}=69.83^{\circ}$
$l=0 \rightarrow 28$
3 standard reflections frequency: 60 min intensity decay: 1%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1000 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$w R\left(F^{2}\right)=0.176$
$(\Delta / \sigma)_{\text {max }}=0.003$
$S=1.311$
$\Delta \rho_{\text {max }}=0.20 \mathrm{e} \AA^{-3}$
2264 reflections
157 parameters
H -atom parameters constrained
$\Delta \rho_{\min }=-0.14 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0075 (10)

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 2$	$1.271(2)$	$\mathrm{O} 3-\mathrm{C} 6$	$1.307(2)$
$\mathrm{O} 2-\mathrm{C}^{\prime}$	$1.304(3)$	$\mathrm{O} 4-6^{\prime}$	$1.256(2)$
$\mathrm{O} 4-\mathrm{C}^{\prime}-\mathrm{C}^{\prime}$	$122.41(19)$	$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$	$121.52(18)$
$\mathrm{O} 4-6^{\prime}-\mathrm{C}^{\prime}$	$117.72(19)$	$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	$117.49(18)$
$\mathrm{O} 3-\mathrm{C} 6-\mathrm{C} 1$	$123.34(18)$	$\mathrm{O} 2-\mathrm{C} 2^{\prime}-\mathrm{C} 1^{\prime}$	$123.59(19)$
$\mathrm{O} 3-\mathrm{C} 6-\mathrm{C} 5$	$114.17(17)$	$\mathrm{O} 2-2^{\prime}-\mathrm{C}^{\prime}$	$114.12(19)$

$\mathrm{C}^{\prime}-\mathrm{C1}^{\prime}-\mathrm{C} 6^{\prime}-\mathrm{O} 4$	$-170.41(18)$	$\mathrm{C} 7-\mathrm{C}^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{O} 2$	$-7.4(3)$
$\mathrm{C} 7-\mathrm{C} 1^{\prime}-\mathrm{C} 6^{\prime}-\mathrm{O} 4$	$7.8(3)$	$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-156.59(18)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{O} 3$	$169.67(17)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$25.9(3)$
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 6-\mathrm{O} 3$	$-8.6(3)$	$\mathrm{O} 3-\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$161.36(17)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 1$	$-171.40(17)$	$\mathrm{O} 4-\mathrm{C}^{\prime}-\mathrm{C}^{\prime}-4^{\prime}$	$-157.6(2)$
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 1$	$6.9(3)$	$\mathrm{O} 2-2^{\prime}-\mathrm{C}^{\prime}-4^{\prime}$	$159.6(2)$
$\mathrm{C} 6^{\prime}-\mathrm{C} 1^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{O} 2$	$170.75(18)$		

Table 2
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 3 B \cdots \mathrm{O} 1^{\mathrm{i}}$	0.97	2.57	$3.522(3)$	168
$\mathrm{C}^{\mathrm{i}}-\mathrm{H} 5 A \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.97	2.56	$3.371(3)$	141
$\mathrm{C}^{\prime}-\mathrm{H}^{\prime} 1 \cdots \mathrm{O}^{\mathrm{iii}}$	0.97	2.65	$3.525(3)$	150
$\mathrm{C}^{\prime}-\mathrm{H}^{\prime} 2 \cdots 2^{\mathrm{iv}}$	0.97	2.71	$3.477(3)$	136
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 1$	0.82	1.78	$2.581(2)$	165
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 4$	0.82	1.84	$2.649(2)$	171
Symmetry codes: (i)	$-x, 1-y,-z ;$	(ii) $x-\frac{1}{2}, \frac{1}{2}-y,-z ;$ (iii) $\frac{1}{2}-x, y-\frac{1}{2}, z ;$	(iv)	
$-x, y-\frac{1}{2}, \frac{1}{2}-z$.				

The H atoms are fixed geometrically and allowed to refine riding on the corresponding non- H atoms $(\mathrm{O}-\mathrm{H}=0.82 \AA$ and $\mathrm{C}-\mathrm{H}=$ $0.97 \AA$).

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: SDP (Frenz, 1978); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990);
program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

References

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1357.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Frenz, B. A. (1978). The Enraf-Nonius CAD-4 SDP - a Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Solution. Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld \& G. C. Bassi, pp. 64-71. Delft University Press.

Govindasamy, L. \& Subramanian, E. (1997). Acta Cryst. C53, 927-938.
Komen, R. P., Miskelly, G. M., Oliver, A. \& Rickard, C. E. F. (1999). Acta Cryst. C55, 1213-1215.
Lalancette, R. A., Thompson, H. W. \& Cote, M. L. (1997). Acta Cryst. C53, 901-903.
Li, S., Lundquist, K. \& Stomberg, R. (1999). Acta Cryst. C55, 1012-1014.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Paixao, J. A., Silva, P. P. S., Beja, M. A., Silva, M. R., Gomes, D. M. E. \& Belsley, M. (1999). Acta Cryst. C55, 1287-1290.
Parvez, M., Ali, S., Mazhar, M., Bhatti, M. H. \& Khokhar, N. M. (1999). Acta Cryst. C55, 1280-1282.
Peter, J. S. S., Ejik, V., Verboom, W. \& Reinhoudt, D. N. (1992). Acta Cryst. C48, 1884-1886.
Setter, H. (1995). Angew. Chem. 67, 769.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

